Análise da folga de produtividade na produção de grãos no Brasil
Análise da folga de produtividade na produção de grãos no Brasil
Sumário

Introdução ... 13

Aspectos conceituais .. 14
 Produtividade potencial e folga de produtividade ... 14

Aspectos metodológicos .. 18
 Dados .. 18
 Construção ... 19
 Cálculos auxiliares ... 22
 Projeção de produção ... 22
 Variação média da produtividade ... 22
 Programação ... 24
 1. Variação na composição regional da produção nacional .. 25
 2. Ganhos de produtividade ... 26

Resultados ... 30
 Produtividade dos grãos: potencial, média e folga ... 30
 Projeções da produção de grãos ... 32
 Estimativas de ganhos de produtividade de grãos ... 34
 Cenários de redução da folga de produtividade e impactos na produção nacional de grãos ... 34
 Cenário 1: A composição regional da produção nacional de grãos varia ± 2% 34
 Cenário 2: A produtividade regional é adicionada por uma quantidade ótima de produto por unidade de área ... 36
 Cenário 3: A produtividade regional é aumentada por uma taxa de incremento ótima ... 38
Discussão ... 39
Síntese e considerações finais ... 40
Referências ... 42
Anexos .. 41

Tabela anexa 1. Produção, produtividade (média e potencial) e folga de produtividade de grãos – Brasil e regiões, 1990 a 2015... 42
Tabela anexa 2. Projeções da produção de grãos nas regiões brasileiras – 2016 a 2020... 46
Tabela anexa 3. Cenário 1: Produtividade de grãos e folga nos cenários base e ótimo - Brasil e regiões... 47
Lista de tabelas

Tabela 1. Cenário base para os exercícios de programação da produção nacional de grãos em nível nacional ... 24

Tabela 2. Produtividade média e variação média da produtividade de grãos nas regiões brasileiras no período de 2011 a 2015 ... 34

Tabela 3. Cenário 1: Composição regional da produção nacional de grãos nos cenários base e ótimo ... 35

Tabela 4. Cenário 2: Produtividade de grãos nas regiões brasileiras e impacto na produção nacional nos cenários base e ótimo ... 36

Tabela 5. Cenário 3: Produtividade de grãos nas regiões brasileiras e impacto na produção nacional nos cenários base e ótimo ... 38
Lista de figuras

Figura 1. Definições de produtividade potencial e folga relevantes para a *yield gap analysis* ... 17

Figura 2. Exemplo para o Brasil: produtividades de grãos - média (*P*) e potencial (*PS*) ... 21

Figura 3. Evolução das produtividades média e potencial de grãos - Brasil e regiões, 1990 a 2015 ... 31

Figura 4. Evolução da folga de produtividade de grãos nas regiões brasileiras - 1990 a 2015 ... 31

Figura 5. Produção e folga de produtividade de grãos - Brasil e regiões, 1995, 2005 e 2015 ... 32

Figura 6. Projeções da produção de grãos nas regiões brasileiras – 2016 a 2020 33

Figura 7. Cenário 1: Redução ótima da folga de produtividade de grãos no Brasil e regiões .. 35

Figura 8. Cenário 2: Contribuição ordenada de cada região para o incremento ótimo na produção nacional de grãos .. 37

Figura 9. Cenário 3: Contribuição ordenada de cada região para o incremento ótimo na produção nacional de grãos .. 39
Lista de quadros

Quadro 1. Modelo de programação linear da produção adicional total futura de grãos... 25

Quadro 2. Modelo de programação mista (1) da produção adicional total futura de grãos.. 27

Quadro 3. Modelo de programação mista (2) da produção adicional total futura de grãos.. 29

Quadro 4. Modelo de projeção da produção de grãos nas regiões brasileiras 33
Introdução

Projeções de longo prazo das Nações Unidas apontam para uma população mundial de 9,15 bilhões de habitantes em 2050, cerca de 24% maior que a atual. O impacto projetado desse crescimento populacional sobre a demanda global de produtos agropecuários para alimentação e outros usos é de incremento da ordem de 60% em relação aos níveis observados em 2005/2007 (ALEXANDRATOS; BRUINSMA, 2012). Ou seja, tais projeções apontam para a necessidade de aumentar a produção.

Estudos da FAO (2009) revelam que novas áreas agricultáveis concentram-se em países em desenvolvimento, incluindo, principalmente, o Brasil. Estima-se, porém, que apenas cerca de 21% do aumento necessário na produção desses países, até o horizonte de 2050, será devido à expansão da área plantada; os restantes 79%, aproximadamente, derivariam de incrementos na produtividade das culturas (yield, 73%) e na intensidade do uso da terra (6%). Quando se considera somente a América Latina e Caribe, essas estimativas mudam para 40% na área, 53% na produtividade e 7% na intensidade (ALEXANDRATOS; BRUINSMA, 2012, p. 98). Em qualquer caso, entende-se que a maior parte do aumento da produção deve vir de ganhos de produtividade.

Projeções específicas para o Brasil reforçam esse argumento ao indicar que "o crescimento da produção agrícola no Brasil deve continuar acontecendo com base na produtividade. Em grãos, esse fato é verificado ao observar que para os próximos dez anos [de 2015/2016 a 2025/2026], a produção está prevista crescer 30,0% e a área plantada, 12,7%." (BRASIL, 2016, p. 93).

Ocorre que a produtividade varia muito geograficamente, dependendo de condições biofísicas, das tecnologias e do manejo agropecuário adotados, de modo que haveria distintas capacidades de incrementos adicionais de produtividade entre países, regiões e localidades para garantir a segurança alimentar e o crescimento econômico da produção.

Uma abordagem que tem sido usada para avaliar esse problema é conhecida como análise de folga de produtividade (yield gap analysis). Trata-se de um conjunto de
conceitos e técnicas para medir uma "capacidade latente" de produção, baseada em valores de referência (produtividades potenciais), que estabelecem limites superiores relativamente aos níveis observados, em diferentes escalas no espaço e no tempo. Também busca identificar fatores que limitam a produtividade e como poderiam ser manejados de forma a reduzir as folgas quantificadas.

Há estudos de folga de produtividade em diversas escalas espaciais (estabelecimento rural e níveis subnacional, nacional, regional, macroambiental e global) e temporais (séries diárias, mensais e anuais em períodos curtos, de um ano, a longos, de até 50 anos), considerando um ou poucos produtos, geralmente grãos (os mais presentes incluem: trigo, milho, arroz e soja). Compilações úteis desses estudos podem ser encontradas em van Ittersum et al. (2013) e FAO e DWFI (2015). No entanto, são raros aqueles que incluem ampla gama de produtos e detalhamento territorial. No caso do Brasil, há estudos focados na cana-de-açúcar (MARIN et al., 2016; MONTEIRO, 2015), na soja (SENTELHAS et al., 2015), no milho (MONTEIRO et al., 2017; TOJO SOLER, SENTELHAS e HOOKENBOOM, 2007) e no arroz (MONTEIRO et al., 2013), todos baseados em modelos de simulação de cultivos.

O presente estudo inspira-se nessa abordagem sob dois aspectos: 1) incorpora a noção de potencial como limite superior para o crescimento da produtividade; e 2) quantifica folgas de produtividade (yield gaps) como diferenças entre médias registradas em relação a potenciais estimados. Entretanto, diferencia-se na operacionalização desse conceito, adotando uma perspectiva evolutiva (espacialmente hierárquica e temporalmente adaptativa), em lugar de absoluta (máximo estritamente biofísico ou com adição de certas restrições, tais como déficit hídrico e nível tecnológico).

Especificamente, objetiva-se (1) propor um novo método de estimação da produtividade potencial, (2) determinar as magnitudes relativas das folgas de produtividade de grãos (como agregado) em nível nacional; (3) ilustrar usos da análise de folga de produtividade no planejamento e avaliação territorial de intervenções na agricultura por meio da construção de cenários de redução da folga de produtividade e impactos na produção.

Aspectos conceituais

Produtividade potencial e folga de produtividade

Neste trabalho, o termo produtividade refere-se ao rendimento ou à produtividade primária, parcial ou da terra, identificada com o termo yield, em inglês. Para cada produto, em termos puramente teóricos, a produtividade é expressa em escala aberta, a partir do zero. Assim sendo, parece que poderia tomar qualquer valor positivo. No entanto, é conveniente ter alguma cota superior, para relativizar um determinado valor
de produtividade. Na grande maioria dos casos, a comparação de um valor registrado em campo com uma cota superior mostra uma diferença, que pode ser designada como folga de produtividade \(Y_g, \text{yield gap, termo em inglês}\). De fato, tem se desenvolvido uma linha de pesquisa, conhecida como \textit{yield gap analysis} (FAO; DWFI, 2015), dedicada a estimar e explicar folgas de produtividade, bem como elaborar recomendações para reduzi-las.

Entre as questões tratadas na \textit{yield gap analysis} podem ser mencionadas:

- a magnitude da diferença entre dois níveis de produtividade (ex.: média e potencial) de um produto (LOBELL; CASSMAN; FIELD, 2009);
- a investigação das principais causas das folgas quantificadas (idem);
- a identificação de opções e recomendação de políticas, de tecnologias e de manejo agropecuário centradas no controle ou remoção de fatores limitantes (LABORTE et al., 2012);
- a avaliação \textit{ex-ante} do impacto da adoção dessas recomendações (GRASSINI et al., 2015). Por exemplo, a estimação de incrementos na produção ou de economia de área (LABORTE et al., 2012; MARIN et al., 2016).

Van Ittersum et al. (2013) e Grassini et al. (2015) destacam que a \textit{yield gap analysis} também tem sido usada para simular impactos das mudanças climáticas e de mudanças no uso da terra. Os autores ainda acrescentam que os resultados desse tipo de análise representam elementos chave para modelos econômicos de avaliação da segurança alimentar e do uso da terra em diferentes escalas espaciais.

A estimação de \textit{yield gaps} está fundamentada na operacionalização do conceito de produtividade potencial, contra a qual se comparam produtividades observadas \(P_A, \text{actual yield}\), especificada uma escala espacial e temporal de interesse. As produtividades observadas, frequentemente, são médias a partir de estatísticas oficiais ou de valores obtidos em levantamentos executados em estabelecimentos rurais.

Já a produtividade potencial representa um limite máximo para o crescimento das produtividades observadas. Em princípio, a produtividade potencial representa um estado idealizado no qual a cultura cresce sem limitações biofísicas exceto aquelas ligadas a fatores não controláveis, normalmente de natureza climática: radiação solar, temperatura do ar, chuvas em sistemas não irrigados, entre outros (LOBELL; CASSMAN; FIELD, 2009). Portanto, alcançar a produtividade potencial requer perfeito manejo de todos os demais fatores que interferem na produção, o que é praticamente impossível em condições de campo.

Essa definição, portanto, é bastante restritiva e de difícil mensuração, dada a necessidade de levar em consideração fatores múltiplos e específicos para cada cultura
em cada unidade espacial examinada. A depender da abrangência do estudo, torna-se muito difícil reunir todo o conjunto de dados necessários para estimar, com qualidade, a produtividade potencial segundo uma acepção estrita do conceito.

Os estudos de *yield gap analysis*, então, operacionalizam a produtividade potencial segundo uma acepção ampliada, como uma cota superior de referência, isto é, um *benchmark* (GRASSINI et al., 2015). Tal nível tem o efeito de um meta que orienta esforços de intervenção sobre fatores controláveis em busca do crescimento da produção baseado no incremento da produtividade em uma área disponível.

Diversos métodos têm sido propostos, com diferentes níveis de restrição/amplitude do conceito de produtividade potencial e baseados em distintas técnicas, variáveis e dados. Consequentemente, geram diferentes valores de produtividade potencial e de folgas de produtividade, que usualmente recebem designações próprias (AGGARWAL et al., 2008; EVANS e FISCHER, 1999; FAO; DWFI, 2015; LOBELL; CASSMAN; FIELD, 2009; VAN IITTERSUM et al., 2013). A seguir, indicam-se as principais categorias desses métodos:

1) métodos teóricos, que exploram o entendimento corrente dos princípios fisiológicos e das capacidades produtivas livres de estresses bióticos e abióticos, com uso extensivo de modelos matemáticos. Essa classe de métodos gera valores de produtividade teórica (*Pₜ*, theoretical yield), com foco fisiológico e agronômico.

Variantes dos métodos teóricos incluem restrições. Eles buscam reproduzir o crescimento da planta em ambientes aos quais está adaptada, com plena disponibilidade de nutrientes e pleno controle de fatores de estresse (doenças, pragas, ervas daninhas, acamamento etc.). Tais modelos geram valores de referência, influenciados pela localização e fatores climáticos (radiação, concentração de CO₂, temperatura), menores que a produtividade teórica, mas acima das produtividades observadas. Um exemplo é a produtividade sob déficit de água (*Pₖ*, *water-limited yield*), usada para sistemas não irrigados, afetada pelo tipo de solo e topografia.

2) métodos empíricos, incluindo o registro de produtividades alcançadas em estações experimentais ou unidades de demonstração, bem como em condições peculiares de produção (e.g., prêmios de produtividade). Considera-se que os valores obtidos com esses métodos correspondem a produtividades experimentais (*Pₑ*, *experimental yield*), resultantes do uso das melhores práticas e tecnologias existentes;

3) métodos estatísticos, baseados na produtividade máxima ou na produtividade média do percentil superior observada numa grande amostra de produtores de uma região de interesse. Métodos menos comuns na literatura e influenciados pela qualidade dos dados, geram produtividades alcançáveis (*P₇*, *attainable yield*).
4) métodos combinados, que usam dados observacionais, sensoriamento remoto, sistemas de informação geográfica (SIG) e modelos de complexidade variada, mais adequados para estudos em maior escala espacial (regional e acima).

Os métodos e suas variantes têm diferente sensibilidade quanto aos múltiplos fatores que podem influenciar a produtividade potencial em cada zona agroecológica, nomeadamente a interação genótipo-ambiente-manejo. Daí, geram distintos valores de referência para a produtividade potencial. Em todos os casos, o nível de referência obtido é comparado com médias das produtividades registradas (P), que refletem o estado corrente dos solos e clima e a capacidade média dos produtores quanto ao uso de tecnologias e ao manejo agropecuário. A Figura 1 ilustra os diferentes níveis que podem tomar os potenciais, dependendo do método de estimação adotado, e as magnitudes das respectivas folgas de produtividade.

![Figura 1. Definições de produtividade potencial e folga relevantes para a yield gap analysis](image)

Na literatura consultada é frequente a preocupação com estimativas de produtividade muito próximas do potencial em sentido estrito, isto é, do limite biofísico da cultura. Nesses trabalhos, é central estimar, com a maior precisão possível, a magnitude do potencial e do gap como indicativos de expectativa quanto ao crescimento da produtividade, já que a proximidade ao potencial representa desaceleração, e, portanto, expectativa de estagnação.
Neste estudo, buscamos algo diferente. A estimação do potencial não representa, em si, o foco, mas sim um recurso para fechar a escala de comparação das produtividades médias registradas no território nacional. O foco está em relativizar o desempenho produtivo real das entidades territoriais, permitindo identificar locais mais apropriados para intervenções orientadas a um rápido ganho de produção.

Adotamos como premissas: 1) aumentar a produção nacional com base em crescimento da produtividade; 2) operacionalizar o conceito de potencial como o máximo já registrado nas estatísticas agrícolas. O quão distante (ou próximo) esse valor está do potencial *stricto sensu* foge ao escopo trabalhado.

Introduzimos uma variante dos métodos estatísticos, que se diferencia pela operacionalização de um valor de referência hierárquico e adaptativo para a produtividade potencial (P_s, *statistics-based yield*). Aplicamos esse método para o conjunto dos grãos e comparamos os potenciais com as médias alcançadas em cada entidade territorial, de modo a determinar a magnitude da folga em cada um ano a ano. Em seguida, elaboramos cenários que simulam reduções na folga de produtividade e seus impactos sobre a produção nacional de grãos para ilustrar usos do *yield gap* na análise de problemas práticos da produção agrícola.

Aspectos metodológicos

Dados

A disponibilidade e qualidade de dados desagregados da produção segundo os múltiplos fatores que influenciam a produtividade de cada cultura – uma condição ideal para proceder à *yield gap analysis* com métodos tradicionais (GRASSINI et al. 2015) – é frequentemente limitada. Além disso, os dados referentes às produtividades registradas e aos potenciais estimados precisam estar em escalas compatíveis para serem comparados e, portanto, permitir o cálculo da folga de produtividade para usos práticos.

As estatísticas agrícolas anuais do IBGE atendem a esses requisitos e foram tomadas como insumos únicos sobre os quais se aplicou o novo método de estimação da produtividade potencial apresentado neste trabalho. O IBGE fornece séries longas da produção agrícola na forma de agregados territoriais para os diversos níveis da Divisão Territorial do Brasil para cerca de 140 produtos. Elas podem ser publicamente acessadas e permitem análises comparativas.

Neste estudo, utilizamos as séries de quantidade produzida e área colhida provenientes da Produção Agrícola Municipal (PAM) que abrangem o período de 1990 a 2015. O
anagregado grãos é composto pelos seguintes itens individuais: algodão, amendoim, arroz, aveia, centeio, cevada, mamona, feijão, milho, sorgo, soja, e trigo. Eles foram selecionados a partir dos produtos considerados no *Acompanhamento da safra brasileira de grãos* (CONAB, 2014), considerando-se também a disponibilidade de séries de dados no IBGE. Nos casos do girassol e do triticale, há dados a partir de 2005 apenas, o que representa menos da metade do período de análise. A canola não faz parte das séries anuais do IBGE. Por isso, esses grãos foram excluídos deste estudo.

Os dados municipais de 1990 a 2015 foram agregados para os níveis territoriais superiores (microrregião, mesorregião, unidade da federação, região e Brasil), mais adequados para trabalhar em séries de tempo longas. Em seguida, para cada nível territorial, foram calculadas as médias móveis de três anos, com o intuito de suavizar a variabilidade interanual que se observa nos dados originais. Com esse procedimento, obtiveram-se séries de médias trienais de 1991 a 2014. Para completar o período, atribuiu-se a média dos dois primeiros anos do período ao ano inicial (1990); e, de maneira similar, atribuiu-se a média dos dois últimos anos do período ao ano final (2015). Com isso, o conjunto de dados de trabalho é formado por duas séries de médias entre 1990 e 2015, uma para cada variável (quantidade produzida e área colhida), para cada nível territorial. Para este trabalho, apenas os níveis Brasil e região foram utilizados.

Construção

Esta subseção apresenta o método proposto e aplicado para estimação do potencial estatístico (P_s) e da folga de produtividade (Y_g).

Os métodos tradicionais na *yield gap analysis* estão orientados à maximização das produtividades observadas considerando os limites dados pela produtividade potencial para as culturas examinadas. No entanto, na prática, os produtores frequentemente buscam um equilíbrio entre a maximização do lucro e a minimização do risco ao nível do estabelecimento rural, e não apenas a maximização da produtividade da lavoura individual. Em muitos casos, esse problema é contornado por meio da aplicação de um fator redutor (menor que 1, normalmente 0,8), sobre a produtividade potencial (FAO; DWFI, 2015, p. 7). O valor atribuído ao fator redutor, contudo, embute certa arbitrariedade.

Distintamente, o método estatístico que propomos neste trabalho incorpora diferenças e limitações econômicas, tecnológicas, ambientais e de manejo que incidem na produção local na medida em que se refletem nos dados originais. Ele também tem duas outras características: 1) é hierárquico, porque, escolhido um nível espacial de análise da Divisão Territorial do Brasil (DTB), toma-se o nível imediatamente inferior
para determinar o valor potencial para a produtividade; 2) é adaptativo, porque, a cada instante (ano), toma o valor máximo entre o valor imediatamente anterior e o maior valor registrado no instante considerado, isto é, incorpora a difusão de tecnologias e práticas de manejo promotoras de incrementos de produtividade.

Sejam os anos \(t = 0, 1, 2, \ldots, T \) (ex.: 1990 corresponde a \(t = 0 \) e 2015 a \(t = 25 \)) e as entidades geográficas \(i = 0, 1, 2, \ldots, I \), em que \(i = 0 \) representa a união de todas as outras. O procedimento de cálculo da produtividade potencial consiste em:

- Seleccionar o nível territorial de análise, por exemplo nacional;
- Para cada entidade no subnível inferior (ex.: as cinco regiões brasileiras):
 - Tomar os dados de quantidade produzida \((Q^l_t) \) e área colhida \((A^l_t) \), já em médias móveis de três anos, para cada entidade geográfica do nível territorial inferior e calcular as produtividades registradas \((P^l_t) \) em kg/ha:

\[
P^l_t = \frac{Q^l_t}{A^l_t} \mid i = 1, 2, \ldots, I; \ t = 0, 1, 2, \ldots, T
\]

- Para o ano inicial, a produtividade potencial \((P^S_0) \) é definida como:

\[
P^S_0 = \max\{P^l_0\} \mid i = 1, 2, \ldots, I; \ t = 0
\]

- e a produtividade potencial nos anos subsequentes, como:

\[
P^S_t = \max\{P^S_{t-1}; \max P^l_t\} \mid i = 1, 2, \ldots, I; \ t = 1, 2, \ldots, T
\]

O valor da produtividade potencial anual obtida por esse procedimento é válido para todas as entidades territoriais consideradas, inclusive a união de todas elas.

Um exemplo para o Brasil, considerando nível territorial de análise **nacional** e nível inferior **cinco regiões brasileiras** ilustra os resultados do procedimento (Figura 2).
Figura 2. Exemplo para o Brasil: produtividades de grãos - média (P) e potencial (P_S).

Fonte: Dados originais do IBGE (Produção Agrícola Municipal), tratados e armazenados na base Agrotec da Embrapa SGI. Elaboração dos autores.

Nota: A produtividade potencial foi determinada, em cada ano, como o maior valor entre as produtividades das regiões no ano e o maior valor obtido nas regiões até então.

A opção por um método estatístico se justifica pela intenção de extrair informações ocultas nos dados estatísticos da produção agrícola em nível agregado, sem a necessidade de incorporar conhecimentos, pressupostos, critérios e dados exógenos, por exemplo referentes à fisiologia da planta, às características do solo, ao padrão climático etc. Em análises desse tipo, dificilmente há disponibilidade de dados específicos nesses diversos domínios para cada produto em todo o território nacional e suas subdivisões.

A hierarquia territorial induz a comparações mais interessantes e razoáveis entre unidades espaciais. Conforme se amplia o detalhamento territorial, supõe-se maior a homogeneidade agroclimatológica, tecnológica e econômica da produção. A natureza adaptativa do método proposto leva em consideração a tendência evolutiva geral, de crescimento, da produtividade média dos grãos no Brasil no período (Figura 2).

A folga de produtividade (Y_G) é calculada como a diferença entre a produtividade potencial estatisticamente estimada (P_S) e a produtividade média registrada (P) em cada nível territorial i a cada ano t:

$$Y_G^{i,t} = P_S^t - P^i_t \mid i = 0, 1, 2, \ldots, I ; t = 0, 1, 2, \ldots, T$$

Este trabalho mostra os resultados para o Brasil e as cinco regiões.
Na literatura em *yield gap analysis* é comum considerar como passo seguinte à estimação da magnitude da folga de produtividade a identificação de suas causas e avaliação de opções de manejo, de tecnologias e de políticas voltadas à sua redução (*gap-closing management options and technology policies*). Do ponto de vista estatístico, entendemos ser conveniente um passo intermediário, que consiste em gerar cenários possíveis de redução da folga de produtividade e seus impactos na produção brasileira de grãos. Neste trabalho, realizamos alguns exercícios nesse sentido para ilustrar o uso da *yield gap analysis* para o planejamento territorial de investigações e intervenções na agricultura. Os procedimentos adotados nesses exercícios estão descritos na sequência.

Cálculos auxiliares

Esta subseção menciona brevemente os métodos utilizados para a geração de projeções da produção de grãos e de estimativas de ganho de produtividade nas regiões brasileiras para os próximos anos. Embora não seja o foco deste trabalho, a geração dessas projeções e estimativas foi necessária para os exercícios de simulação de cenários de redução da folga de produtividade e impactos na produção.

Projeção de produção

Para a geração de projeções, diversos métodos quantitativos, com variados graus de complexidade e precisão, podem ser empregados para estimar o comportamento futuro de séries temporais. Para os fins auxiliares e ilustrativos aqui pretendidos, i.e. gerar elementos para a programação (ver subseção seguinte), foi suficiente utilizar algoritmos de previsão incorporados no software utilizado (Tableau Desktop). Ele compara diferentes modelos de suavização exponencial e seleciona aquele que fornece a previsão com mais alta qualidade.

O exercício realizado considerou as séries regionais de produção de grãos para os anos de 1990 a 2015. As estimativas foram feitas para um período de previsão de cinco anos com intervalo de confiança de 95%.

A especificação do modelo de previsão e das projeções resultantes estão apresentados na seção *Projeções da produção de grãos*.

Variação média da produtividade

As folgas estimadas representam um recurso para limitar a expectativa de incremento da produtividade. Contudo, pode ocorrer de o potencial estar num patamar muito
acima da produtividade registrada em certas regiões, de modo que eliminar toda a folga estimada se torna uma possibilidade bastante remota num horizonte curto de previsão. No caso aqui examinado, de fato não é razoável esperar que a produtividade dos grãos aumente 1.746 kg/ha na região Nordeste nos próximos anos, por exemplo. Por isso, optamos por estabelecer limites superiores regionais baseados no incremento médio observado nos últimos cinco anos. Consideramos que o histórico recente dá pistas razoáveis do que se pode esperar na ausência de eventos extraordinários, ou seja, se tudo correr dentro de condições conhecidas. Certamente, a produção está sujeita ao impacto de eventos imprevisíveis, como extremos climáticos ou inovações, que podem extrapolar projeções e estimativas. No entanto, o tratamento quantitativo dessas situações ainda é pouco estabelecido.

Para a geração de estimativas de ganho de produtividade, tratando-se de variável de razão (quociente entre quantidade produzida e área colhida), os métodos de projeções não são adequados. Os intervalos de confiança ampliam-se muito, tornando as projeções pouco precisas. Optou-se, então, por adotar um procedimento baseado no comportamento recente (entre 2011 e 2015) da variação da produtividade dos grãos em cada região, especificado a seguir:

- Calcularam-se as produtividades médias de grãos em cada região entre os anos de 2011;

 \[
 \bar{P}_t = \frac{\sum_{t=21}^{25} Q_t^t}{\sum_{t=21}^{25} A_t^t}, \quad t = 21 \text{ corresponde a } 2011 \text{ e } t = 25 \text{ a } 2015
 \]

- Calcularam-se as variações interanuais absoluta e relativa da produtividade de grãos em cada região;

 \[
 \Delta P_t^t = P_t^t - P_t^{t-1}, \quad t = 22 \text{ a } 25
 \]

 \[
 \Delta \bar{P}_t^t = \frac{P_t^t - P_t^{t-1}}{\bar{P}_t^{t-1}}, \quad t = 22 \text{ a } 25
 \]

- Calcularam-se as médias aritméticas simples das variações interanuais absolutas da produtividade entre os anos de 2011 e 2015. Esses valores foram tomados como limites superiores regionais de aumento da produtividade de grãos nos próximos anos no cenário 2.1. Adição de uma quantidade de produto à produtividade regional, cuja programação está detalhada na seção seguinte;
Análise da folga de produtividade na produção de grãos no Brasil

Variação absoluta média:

\[\overline{\Delta \overline{P}_i} = \frac{1}{4} \sum_{t=22}^{25} (P_i^t - P_i^{t-1}) \]

- Calcularam-se as taxas médias geométricas de variação da produtividade a partir das variações interanuais relativas de 2011 a 2015. Esses valores foram tomados como limites superiores regionais da taxa de incremento da produtividade no cenário 2.2. Aumento da produtividade regional por uma taxa de incremento, cuja programação está detalhada na seção seguinte.

Taxa média de variação (%):

\[\overline{\bar{r}_i} = 100 \times \left(\prod_{t=22}^{25} \left(1 + \frac{P_i^t - P_i^{t-1}}{P_i^{t-1}} \right)^{1/4} - 1 \right) \]

Os resultados desse procedimento estão apresentados na seção Estimativas de ganhos de produtividade de grãos.

Programação

Os modelos de programação matemática desenvolvidos estão especificados a seguir. O objetivo destes modelos é determinar onde e quanto aumentar a produtividade regional de grãos para que a produção nacional seja máxima; isto é, maximizar a produção nacional de grãos. Eles tomam como hipótese que a área colhida, a produtividade potencial e a folga de produtividade permaneçam constantes e iguais aos níveis registrados em 2015 em cada região.

Tabela 1. Cenário base para os exercícios de programação da produção nacional de grãos em nível nacional

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A_i) (ha)</td>
<td>(Q_i) (t)</td>
</tr>
<tr>
<td>Brasil</td>
<td>57.017.397</td>
<td>203.556.941</td>
</tr>
<tr>
<td>Norte</td>
<td>2.254.203</td>
<td>7.018.382</td>
</tr>
<tr>
<td>Sudeste</td>
<td>5.091.329</td>
<td>19.261.616</td>
</tr>
<tr>
<td>Sul</td>
<td>19.365.759</td>
<td>73.377.565</td>
</tr>
<tr>
<td>Centro-Oeste</td>
<td>22.685.581</td>
<td>87.281.916</td>
</tr>
</tbody>
</table>

Fonte: Dados originais do IBGE (Produção Agrícola Municipal), tratados e armazenados na base Agrotec da Embrapa SGI.
Elaboração dos autores.
Nota: Ver seção Aspectos metodológicos.
Tabela 1. Cenário base para os exercícios de programação da produção nacional de grãos em nível nacional

Legenda:

A: área colhida na região /

Q: quantidade produzida na região /

P: produtividade registrada na região /

P: Produtividade potencial

Y: folga de produtividade na região /

q: produção adicional máxima projetada para a região /

s: participação da região na produção nacional, em %

Os exercícios realizados consideraram o cenário base resumido na Tabela 1 e a programação da produção um ano à frente, isto é, 2016.

1. Variação na composição regional da produção nacional

Neste exercício, considera-se que a composição da produção nacional em termos da participação percentual de cada região não se altera substancialmente no curto prazo.

Tomaram-se como valores de referência para cada região as respectivas médias dos últimos cinco anos (s na Tabela 1). Admitiu-se, para o futuro próximo, variação de +/-2% sobre tais percentuais para a composição da produção adicional de cada região (q).

O Quadro 1 especifica o modelo definido.

Seja x a representação do valor tomado pela variável x na região i no ano r.

Quadro 1. Modelo de programação linear da produção adicional total futura de grãos

<table>
<thead>
<tr>
<th>Função objetiva</th>
<th>*q₀ = máx * ∑ *qᵢ</th>
<th>i=1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Variáveis</td>
<td>*qᵢ</td>
<td>i = 1, 2, ..., 5</td>
<td></td>
</tr>
<tr>
<td>Restrições</td>
<td>1. *qᵢ - qₓᵢ ≤ 0</td>
<td>i = 1, ..., 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. 100 *qᵢ - sᵢ, qᵢ=0 ≥ 0, r = -2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 100 *qᵢ - sᵢ, qᵢ=0 ≤ 0, r = +2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equações auxiliares</td>
<td>*qₓᵢ = Yᵢ}$/ₐrt$ * Aᵢ²₅$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*qₓᵢ = ∑ *qₓᵢ,i</td>
<td>i=1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*sᵢ = sᵢ²₅</td>
<td>r</td>
<td>r = 2</td>
</tr>
<tr>
<td>Parâmetros</td>
<td>i: cada entidade geográfica no subnível territorial em questão, i = 0, ..., 1. Especificamente neste exercício, i = 0 corresponde a Brasil e i = 1, ..., 5 às demais regiões brasileiras.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quadro 1. Modelo de programação linear da produção adicional total futura de grãos

t: ano, $t = 0, 1, \ldots, T$. Especificamente neste exercício, $t = 0$ corresponde ao ano inicial, 1990

$q_{i,t}$: quantidade adicional estimada na região i no ano t

$q_{\text{máx},i,t}$: quantidade adicional máxima estimada para a região i no ano t

$A_{i,25}^1$: área colhida na região i em 2015

$Y_{d,i}^2$: folga de produtividade estimada para a região i em 2015

$s_{i,21:25}^1$: percentual médio de participação da região i na produção total entre os anos de 2011 e 2015

S_i: percentual de participação da região i na produção total no ano t

r_i: taxa de variação de S_i em relação a $s_{i,21:25}^1$ em %

Elaboração dos autores.

2. Ganhos de produtividade

Dois modelos de programação mista foram desenvolvidos de modo a utilizar os resultados da construção (estimativas da folga de produtividade ou yield gap) e dos cálculos auxiliares (estimativas de aumento da produção e da produtividade). Eles estão especificados a seguir.

2.1. Adição de uma quantidade de produto à produtividade regional

A situação simulada para o futuro próximo é de aumento da produtividade atual (p_i^{25}) pela adição de certa quantidade de produto por unidade de área (p_i). Matematicamente:

Situação inicial $Q_i^{25} = p_i^{25}.A_i^{25}$:

Programação para o futuro próximo: $Q_i^{T} = (p_i^{25} + p_i).A_i^{25}$

A situação atual, neste exercício, refere-se ano $t = 25$ ou 2015.

Para a adição da mesma quantidade de produto à produtividade regional (p_i), sem mais considerações, as regiões contribuiriam para a produção adicional total no futuro próximo ($t = T$) , em relação a 2015, na proporção das áreas colhidas, conforme a relação abaixo:

$$\Delta Q_i = Q_i - Q_i^{25} = p_i.A_i^{25}$$
No entanto, as regiões apresentam diferentes possibilidades de aumentar sua produtividade, o que representamos, neste exercício de programação, por meio de três restrições: uma associada à evolução recente da produtividade (variação média dos últimos cinco anos); outra associada à magnitude da folga de produtividade estimada (resultante da construção); e uma terceira relativa à expectativa futura de produção (resultante dos cálculos auxiliares). Uma restrição adicional, ligada ao número de regiões que participariam do aumento da produção nacional, foi introduzida. A ideia aqui foi detectar alvos prioritários de intervenções territoriais no sentido de se alcançar o máximo aumento da produção nacional, considerando o limite projetado.

O limite projetado de aumento da produção nacional \(q_{\text{máx},T} \) foi definido de acordo com o cálculo abaixo:

\[
q_{\text{máx},T} = \max\{Q_{\text{máx},i} - Q_{T}^{25}, 0\},
\]

em que \(Q_{\text{máx},i} \) representa o valor central da projeção de produção para a região \(i \) no ano \(T \) e \(Q_{T}^{25} \), a magnitude da produção regional registrada em 2015.

O modelo de programação está especificado no Quadro 2.

Quadro 2. Modelo de programação mista (1) da produção adicional total futura de grãos

| Função objetiva | \[
q_0 = \max \sum_{i=1}^{5} A_i^{25} p_i
\]
| | \(A_i^{25} p_i \) é a quantidade adicional produzida na região \(i \) no ano \(T \) |
| Variáveis | \(p_i \geq 0 \), produção adicional por unidade de área na região \(i \) no ano \(T \)
| | \(g_i \) é binário (0: não participa da solução; 1: participa da solução) |
| Restrições | 1. \(\sum_{i=1}^{5} g_i \leq n \)
| | \(n \) é um inteiro entre 1 e 5, um parâmetro escolhido pelo usuário que corresponde ao número máximo de regiões que participam da solução.
| | \(\forall i: \)
	2. \(p_i - p_{\text{máx},i} \cdot g_i \leq 0 \)	restrição ligada ao histórico recente da produtividade
	3. \(p_i - q_{\text{máx},i} \cdot g_i \leq 0 \)	restrição ligada à magnitude da folga de produtividade
	4. \(A_i^{25} p_i - q_{\text{máx},i} \cdot g_i \leq 0 \)	restrição ligada à projeção de produção
Parâmetros	\(i \): cada entidade geográfica no subnível territorial em questão, \(i = 0, ..., 5 \).	
	Especificamente neste exercício, \(i = 0 \) corresponde a Brasil e \(i = 1, ..., 5 \) às demais regiões brasileiras.	
Quadro 2. Modelo de programação mista (1) da produção adicional total futura de grãos

| t: ano, \(t = 0, 1, \ldots, T \). Especificamente neste exercício, \(t = 0 \) corresponde ao ano inicial, 1990; \(T \) corresponde ao ano, no futuro próximo, correspondente à solução ótima |
| \(A_i^{25} \): área colhida na região \(i \) em 2015 |
| \(p_{\text{max},i} \): quantidade adicional máxima estimada na região \(i \) por unidade de área no ano \(t \) |
| \(q_{\text{max},i} \): quantidade adicional máxima projetada para a região \(i \) no ano \(T \) |
| \(Y_{Gt}^{25} \): folga de produtividade estimada para a região \(i \) em 2015 |

Elaboração dos autores.

2.2. Aumento da produtividade regional por uma taxa de incremento

Trata-se de aumentar a produtividade atual (\(P_i^{25} \)) por uma taxa de incremento (\(r_i \)). Matematicamente:

\[
\text{Situação inicial: } Q_0^{25} = P_i^{25} \cdot A_i^{25}
\]

Programação para a situação futura: \(Q_t^{T} = P_i^{25} (1 + r_i) \cdot A_i^{25} \)

A situação atual, neste exercício, refere-se ano de 2015.

Para a mesma taxa de incremento da produtividade regional (\(r_i \)), sem mais considerações, as regiões contribuiriam para a produção adicional total no futuro próximo (\(t = T \)), em relação a 2015, na proporção das quantidades produzidas, conforme a relação abaixo:

\[
\Delta Q_i = Q_i - Q_i^{25} = r_i \cdot Q_i^{25}
\]

No entanto, as regiões apresentam diferentes possibilidades de aumentar sua produtividade, o que representamos, neste exercício de programação, por meio de três restrições: uma associada à evolução recente da produtividade (taxa de variação média dos últimos cinco anos); outra associada à magnitude da folga de produtividade estimada (resultante da construção); e uma terceira relativa à expectativa futura de produção (resultante da projeção). Uma restrição adicional, ligada ao número de regiões que participariam do aumento da produção nacional, foi introduzida. A ideia aqui foi detectar alvos prioritários de intervenções territoriais no sentido de se alcançar o máximo aumento da produção nacional, considerando o limite projetado.

O limite projetado de aumento da produção nacional (\(q_{\text{max},i} \)) foi definido de acordo com o cálculo abaixo:
Análise da folga de produtividade na produção de grãos no Brasil

$q_{\text{máx}, i} = \max \{Q_{\text{máx}, i} - Q_{i}^{25}, 0\}$,

em que $Q_{\text{máx}, i}$ representa o valor central da projeção de produção para a região i no ano T, e Q_{i}^{25}, a magnitude da produção regional registrada em 2015.

O modelo de programação está especificado no Quadro 3.

Quadro 3. Modelo de programação mista (2) da produção adicional total futura de grãos

<table>
<thead>
<tr>
<th>Função objetiva</th>
<th>[q_0 = \max \sum_{i=1}^{5} Q_{i}^{25} r_i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variáveis</td>
<td>[r_i \geq 0, \text{taxa de incremento da produtividade na região } i \text{ no ano } T]</td>
</tr>
<tr>
<td></td>
<td>[g_i \text{ é binário (0: não participa da solução; 1: participa da solução)}]</td>
</tr>
<tr>
<td>Restrições</td>
<td>[\sum_{i=1}^{5} g_i \leq n]</td>
</tr>
<tr>
<td></td>
<td>[\forall i;]</td>
</tr>
<tr>
<td></td>
<td>[r_i - r_{\text{máx}, i} \cdot g_i \leq 0]</td>
</tr>
<tr>
<td></td>
<td>[p_{i}^{25} \cdot r_i - Y_{G_i}^{25} \cdot g_i \leq 0]</td>
</tr>
<tr>
<td></td>
<td>[q_{i}^{25} \cdot r_i - q_{\text{máx}, i} \cdot g_i \leq 0]</td>
</tr>
<tr>
<td>Parâmetros</td>
<td>[i: \text{cada entidade geográfica no subnível territorial em questão, } i = 0, \ldots, I.]</td>
</tr>
<tr>
<td></td>
<td>[\text{Especificamente neste exercício, } i = 0 \text{ corresponde a Brasil e } i = 1, \ldots, 5 \text{ às demais regiões brasileiras.}]</td>
</tr>
<tr>
<td></td>
<td>[t: \text{ano, } t = 0, 1, \ldots, T. \text{ Especificamente neste exercício, } t = 0 \text{ corresponde ao ano inicial, 1990}]</td>
</tr>
<tr>
<td></td>
<td>[A_{i}^{25}: \text{área colhida na região } i \text{ em 2015}]</td>
</tr>
<tr>
<td></td>
<td>[g_i: \text{binário que representa a participação da região } i \text{ na solução}]</td>
</tr>
<tr>
<td></td>
<td>[P_{i}^{25}: \text{produtividade da região } i \text{ em 2015}]</td>
</tr>
<tr>
<td></td>
<td>[q_{\text{máx}, i}: \text{quantidade adicional máxima projetada para a região } i \text{ no ano } T]</td>
</tr>
<tr>
<td></td>
<td>[r_i: \text{taxa de incremento da produtividade na região } i \text{ no ano } T]</td>
</tr>
<tr>
<td></td>
<td>[r_{\text{máx}, i}: \text{taxa de incremento máxima da produtividade para a região } i \text{ no ano } T]</td>
</tr>
<tr>
<td></td>
<td>[Y_{G_i}^{25}: \text{folga de produtividade estimada para a região } i \text{ em 2015}]</td>
</tr>
</tbody>
</table>

Elaboração dos autores.

O número de regiões participantes da solução foi simulado da seguinte forma: uma região foi sucessivamente adicionada a cada rodada, de modo que o impacto de cada nova região participante na produção total pode ser mensurado, conforme apresentado nas subseções Cenário 2: A produtividade regional é adicionada por uma
quantidade ótima de produto por unidade de área e Cenário 3: A produtividade regional é aumentada por uma taxa de incremento ótima.

Resultados

A seguir, apresentam-se os principais resultados da yield gap analysis para grãos em nível nacional.

Produtividade dos grãos: potencial, média e folga

As regiões Norte e Nordeste apresentaram folgas de produtividade em todo o período (Figura 4), sempre maior no caso da região Nordeste (acima de 40% do potencial). É notável, contudo, a tendência persistente de queda relativa da folga dessas regiões, marcadamente a partir de 2002. As grandes regiões produtoras – Sul e Centro-Oeste –, diferentemente, mostraram comportamento variável da folga de produtividade ao longo do período examinado.
Figura 3. Evolução das produtividades média e potencial de grãos - Brasil e regiões, 1990 a 2015
Fonte: Dados originais do IBGE (Produção Agrícola Municipal), tratados e armazenados na base Agrotec da Embrapa SGI. Elaboração dos autores.

Nota: Ver Tabela anexa 1.

Figura 4. Evolução da folga de produtividade de grãos nas regiões brasileiras - 1990 a 2015
Em termos relativos, portanto, Norte e Nordeste aumentaram mais suas produtividades médias em grãos do que as demais regiões brasileiras (Tabela anexa 1). No entanto, o impacto na produção foi mínimo: as contribuições dessas regiões para a produção nacional mantiveram-se sempre abaixo de 5% e 10%, respectivamente (Figura 5).

Figura 5. Produção e folga de produtividade de grãos- Brasil e regiões, 1995, 2005 e 2015

Esses resultados indicam que a redução da folga de produtividade, um objetivo frequentemente buscado com a introdução de novas tecnologias, tem efeito distinto no território, a depender do tamanho relativo da produção regional. Para ilustrar tal efeito, foram feitos exercícios de programação matemática cujos resultados estão apresentados na sequência.

Projeções da produção de grãos

Esta subseção apresenta os resultados dos Cálculos auxiliares apresentados na seção Aspectos metodológicos. Na metodologia utilizada, as projeções fornecem elementos para as restrições da programação matemática, a saber, limites máximos esperados de quantidade produzida adicional e de ganhos de produtividade em cada região.

O Quadro 4 detalha os modelos de projeção de produção regional de grãos, baseados no método de suavização exponencial de Holt, e a Figura 6 mostra as projeções.
Quadro 4. Modelo de projeção da produção de grãos nas regiões brasileiras

<table>
<thead>
<tr>
<th>Região</th>
<th>Modelo</th>
<th>Coeficientes de suavização</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nível</td>
<td>Tendência</td>
</tr>
<tr>
<td>Norte</td>
<td>Aditivo</td>
<td>Aditivo</td>
</tr>
<tr>
<td>Nordeste</td>
<td>Aditivo</td>
<td>Aditivo</td>
</tr>
<tr>
<td>Sudeste</td>
<td>Aditivo</td>
<td>Aditivo</td>
</tr>
<tr>
<td>Sul</td>
<td>Aditivo</td>
<td>Aditivo</td>
</tr>
<tr>
<td>Centro-Oeste</td>
<td>Aditivo</td>
<td>Aditivo</td>
</tr>
</tbody>
</table>

O modelo de projeção utilizado é mais preciso para evoluções mais lineares da produção. Isso pode ser observado pela amplitude do intervalo de confiança, significativamente maior para as regiões Sul e Centro-Oeste em relação às demais (Figura 6).

Figura 6. Projeções da produção de grãos nas regiões brasileiras – 2016 a 2020

Fonte: Dados originais do IBGE (Produção Agrícola Municipal), tratados e armazenados na base Agrotec da Embrapa SGI. Preparação dos dados pelos autores.

Notas: 1. Computado no Tableau Desktop, v. 10.3.2
2. Ver Tabela anexa 2.
Estimativas de ganhos de produtividade de grãos

As estimativas de ganho de produtividade obtidas a partir do procedimento especificado na subseção **Variação média da produtividade** constam da Tabela 2.

Tabela 2. Produtividade média e variação média da produtividade de grãos nas regiões brasileiras no período de 2011 a 2015

<table>
<thead>
<tr>
<th>Região</th>
<th>Produtividade média kg/ha</th>
<th>Variação média da produtividade kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norte</td>
<td>2.920</td>
<td>112</td>
</tr>
<tr>
<td>Nordeste</td>
<td>2.024</td>
<td>79</td>
</tr>
<tr>
<td>Sudeste</td>
<td>3.863</td>
<td>-11</td>
</tr>
<tr>
<td>Sul</td>
<td>3.687</td>
<td>51</td>
</tr>
<tr>
<td>Centro-Oeste</td>
<td>3.761</td>
<td>74</td>
</tr>
</tbody>
</table>

Fonte: Dados originais do IBGE (Produção Agrícola Municipal), tratados e armazenados na base Agrotec da Embrapa SGI. Elaboração dos autores.

Esses resultados indicam que, no período recente, o maior ganho de produtividade médio por meio da adição de uma quantidade por unidade de área (na região Norte, com 112 kg/ha) não necessariamente corresponde ao maior ganho relativo, em percentual (na região Nordeste, com 3,99%).

Cenários de redução da folga de produtividade e impactos na produção nacional de grãos

Esta seção apresenta três cenários que simulam reduções da folga de produtividade e impactos na produção de grãos no Brasil com detalhamento regional. Cada cenário foi gerado a partir dos procedimentos de construção, projeção e programação apresentados na seção **Aspectos metodológicos**.

Cenário 1: A composição regional da produção nacional de grãos varia ± 2%

Este cenário foi gerado a partir da programação **1. Variação na composição regional da produção nacional** e simula a evolução da folga de produtividade das regiões na hipótese de haver pequena variação (±2%) em sua participação na produção nacional de grãos. Os resultados dessa programação estão sumarizados na Tabela 3.

Nas condições consideradas, os resultados seriam um incremento de cerca de 4,5 milhões de toneladas de grãos à produção do país registrada em 2015. Tal volume representaria cerca de 22% do máximo possível. A magnitude do impacto seria maior nas regiões que já produziam mais em 2015. Assim, a região Centro-Oeste contribuiria
mais que as outras para a produção nacional ótima (acréscimo de 1,8 milhões de toneladas), seguida de Sul (1,7 milhões t), Sudeste (550 mil t), Nordeste (266 mil) e finalmente Norte (231 mil).

Tabela 3. Cenário 1: Composição regional da produção nacional de grãos nos cenários base e ótimo

<table>
<thead>
<tr>
<th>Região</th>
<th>Cenário base Q<sub>i,2015</sub></th>
<th>P<sub>i,2015</sub></th>
<th>Cenário ótimo Q<sub>i,ótimo</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t</td>
<td>kg/ha % P<sub>S</sub></td>
<td>t</td>
</tr>
<tr>
<td>Brasil</td>
<td>203.556.941 100,00</td>
<td>3.570 91</td>
<td>3.649 93</td>
</tr>
<tr>
<td>Norte</td>
<td>7.018.382 3,45</td>
<td>3.113 79</td>
<td>3.216 82</td>
</tr>
<tr>
<td>Nordeste</td>
<td>16.617.463 8,16</td>
<td>2.181 56</td>
<td>2.216 56</td>
</tr>
<tr>
<td>Sudeste</td>
<td>19.261.616 9,46</td>
<td>3.783 96</td>
<td>3.891 99</td>
</tr>
<tr>
<td>Sul</td>
<td>73.377.565 36,05</td>
<td>3.789 97</td>
<td>3.876 99</td>
</tr>
<tr>
<td>C. Oeste</td>
<td>87.281.916 42,88</td>
<td>3.847 98</td>
<td>3.926 100</td>
</tr>
</tbody>
</table>

Fonte: Dados originais do IBGE (Produção Agrícola Municipal), tratados e armazenados na base Agrotec da Embrapa SGI.
Elaboração dos autores.

Figura 7. Cenário 1: Redução ótima da folga de produtividade de grãos no Brasil e regiões
Fonte: Dados originais do IBGE (Produção Agrícola Municipal), tratados e armazenados na base Agrotec da Embrapa SGI.
Elaboração dos autores.

Nota: Ver Tabela 3.
Nesse cenário, o crescimento da produção nas regiões ficaria atrelado à redução da folga de produtividade. Em nível nacional, uma redução média de aproximadamente 22% nessa variável (de 356 kg/ha para 277 kg/ha) seria observada (Figura 7). Em termos absolutos, a maior redução da folga de produtividade ocorreria na região Sudeste (-108 kg/ha), mas, em termos relativos, a região Nordeste avançaria mais que as outras (3 pontos percentuais (p.p.), ver Tabela 3). A região Centro-Oeste fecharia totalmente a folga existente (Figura 7).

Cenário 2: A produtividade regional é adicionada por uma quantidade ótima de produto por unidade de área

Este cenário foi gerado a partir da programação 2.1. Adição de uma quantidade ótima de produto à produtividade regional e simula a evolução da folga de produtividade das regiões na hipótese de haver incremento na produtividade pela adição de uma quantidade ótima de grãos por hectare de área em cada região, com impacto na produção nacional. Como limite superior da produção adicional de grãos em cada região ($q_{\text{máx}}$) foi adotada a diferença entre a quantidade projetada para o ano de 2016 (Tabela anexa 2) e a quantidade registrada em 2015 (Tabela 1).

A solução dessa programação resultou na adição das quantidades ótimas (kg) por unidade de área (ha) à produtividades regionais a seguir: Norte, 112; Nordeste, 0; Sudeste, 0; Sul, 51; e Centro-Oeste, 74. O impacto na produção regional e nacional está sumarizado na Tabela 4.

Tabela 4. Cenário 2: Produtividade de grãos nas regiões brasileiras e impacto na produção nacional nos cenários base e ótimo

<table>
<thead>
<tr>
<th>Região</th>
<th>Cenário base</th>
<th>Cenário ótimo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$Q_{\text{I},2015}$</td>
<td>$P_{\text{I},2015}$</td>
</tr>
<tr>
<td>Brasil</td>
<td>203.556.941 t</td>
<td>3.570 kg/ha</td>
</tr>
<tr>
<td>Norte</td>
<td>7.018.382 t</td>
<td>3.113 kg/ha</td>
</tr>
<tr>
<td>Nordeste</td>
<td>16.617.463 t</td>
<td>2.181 kg/ha</td>
</tr>
<tr>
<td>Sudeste</td>
<td>19.261.616 t</td>
<td>3.783 kg/ha</td>
</tr>
<tr>
<td>Sul</td>
<td>73.377.565 t</td>
<td>3.789 kg/ha</td>
</tr>
<tr>
<td>Centro-Oeste</td>
<td>87.281.916 t</td>
<td>3.847 kg/ha</td>
</tr>
</tbody>
</table>

Fonte: Dados originais do IBGE (Produção Agrícola Municipal), tratados e armazenados na base Agrotec da Embrapa SGI.

Neste cenário, a produção nacional de grãos cresceria a pouco mais que 206 milhões de toneladas, adicionando cerca de 2,9 milhões de toneladas ao nível registrado em 2015.
Tal incremento seria obtido se consideradas todas as regiões com possibilidade de contribuição e representaria um ganho de 14% do máximo possível, mantidos o potencial e a área de 2015.

As regiões Nordeste e Sudeste, neste cenário, não apresentariam possibilidade de contribuição, uma vez que se projetou, para a primeira, crescimento negativo da quantidade produzida (-152 mil t em relação ao nível de 2015, Tabelas anexas 2 e 3); e para a segunda, crescimento negativo na variação recente da produtividade (-11 kg/ha entre 2011 e 2015, Tabela 2).

A redução da folga de produtividade é avaliada pela diferença entre as produtividades nos cenários ótimo e base como percentual do potencial. Em nível nacional, a redução seria de 1 p.p., com variações entre as regiões de 0 p.p. (no Nordeste e no Sudeste) a 3 p.p. (no Norte). Note-se que, na região Centro-Oeste, a folga de produtividade seria praticamente fechada (Tabela 4).

A programação definida permite controlar o número de regiões que participariam no crescimento da produção nacional de grãos para fins de simulação (ver Quadro 2). Considerando a progressão sucessiva de 1 a 5 regiões, resultariam incrementos decrescentes na seguinte ordem: Centro-Oeste, com 1.678.733 t; Sul (987.654 t); e Norte (252.471 t) (Figura 8).

Figura 8. Cenário 2: Contribuição ordenada de cada região para o incremento ótimo na produção nacional de grãos
Dados originais do IBGE (Produção Agrícola Municipal), tratados e armazenados na base Agrotec da Embrapa SGI.
Elaboração dos autores.

É notável, neste cenário, que as regiões que contribuiriam mais para o incremento da produção nacional de grãos – quais sejam, Sul e Centro-Oeste – registravam as maiores áreas colhidas no cenário base (2015; Tabela 1).
Cenário 3: A produtividade regional é aumentada por uma taxa de incremento ótima

Este cenário foi gerado a partir da programação 2.2. *Aumento da produtividade regional por uma taxa de incremento* e simula a evolução da folga de produtividade das regiões na hipótese de haver incremento da produtividade segundo uma taxa ótima em cada região, com impacto na produção nacional. Como limite superior da produção adicional de grãos em cada região \(q_{m\text{,max}} \) foi adotada a diferença entre a quantidade projetada para o ano de 2016 (Tabela anexa 2) e a quantidade registrada em 2015 (Tabela 1).

A solução dessa programação resultou em taxas de incremento ótimas às produtividades regionais do cenário base indicadas a seguir: Norte, 3,95%; Nordeste, 0%; Sudeste, 0%; Sul, 1,39%; e Centro-Oeste, 2,01%. O impacto na produção regional e nacional está sumarizado na Tabela 5.

Tabela 5. Cenário 3: Produtividade de grãos nas regiões brasileiras e impacto na produção nacional nos cenários base e ótimo

<table>
<thead>
<tr>
<th>Região</th>
<th>Cenário base</th>
<th>Cenário ótimo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Q_{2015}) t</td>
<td>(P_{2015}) kg/ha</td>
</tr>
<tr>
<td>Brasil</td>
<td>203.556.941</td>
<td>3.570</td>
</tr>
<tr>
<td>Norte</td>
<td>7.018.382</td>
<td>3.113</td>
</tr>
<tr>
<td>Nordeste</td>
<td>16.617.463</td>
<td>2.181</td>
</tr>
<tr>
<td>Sudeste</td>
<td>19.261.616</td>
<td>3.783</td>
</tr>
<tr>
<td>Sul</td>
<td>73.377.565</td>
<td>3.789</td>
</tr>
<tr>
<td>Centro-Oeste</td>
<td>87.281.916</td>
<td>3.847</td>
</tr>
</tbody>
</table>

Dados originais do IBGE (Produção Agrícola Municipal), tratados e armazenados na base Agrotec da Embrapa SGI. Elaboração dos autores.

Neste cenário, a produção nacional de grãos cresceria a quase 207 milhões de toneladas, adicionando pouco mais de 3 milhões de toneladas ao nível registrado em 2015. Tal incremento seria obtido se consideradas todas as regiões com possibilidade de contribuição e representaria um ganho de 15% do máximo possível, mantidos o potencial e a área de 2015.

As regiões Nordeste e Sudeste, neste cenário, não apresentariam possibilidade de contribuição, uma vez que se projetou, para a primeira, crescimento negativo da quantidade produzida (-152 mil t em relação ao nível de 2015, Tabelas anexas 2 e 3); e para a segunda, crescimento negativo na taxa de variação recente da produtividade (-0,3% entre 2011 e 2015, Tabela 2).
A redução da folga de produtividade é avaliada pela diferença entre as produtividades nos cenários ótimo e base como percentual do potencial. Em nível nacional, a redução seria de 1 p.p., com variações entre as regiões de 0 p.p. (no Nordeste e no Sudeste) a 3 p.p. (no Norte). Neste cenário, a folga de produtividade na região Centro-Oeste seria praticamente fechada (Tabela 5).

A programação definida permite controlar o número de regiões que participariam no crescimento da produção nacional de grãos para fins de simulação (ver Quadro 3). Considerando a progressão sucessiva de 1 a 5 regiões, resultariam incrementos decrescentes na seguinte ordem: Centro-Oeste, com 1.754.367 t; Sul (1.019.948 t); e Norte (277.226 t) (Figura 9).

É notável, neste cenário, que as regiões que contribuiriam mais para o incremento da produção nacional de grãos – quais sejam, Centro-Oeste e Sul – registravam as maiores quantidades produzidas no cenário base (2015; Tabela 1).

Discussão

Defendemos que o método estatístico proposto e aplicado neste trabalho para determinar a produtividade potencial (de 3.926 kg/ha, em 2015) oferece um bom indicativo de teto para o crescimento da produtividade média de um produto ou agregado, ao menos no curto prazo. As mais recentes Projeções do Agronegócio (BRASIL, 2017) apontam para uma produtividade nacional dos grãos acima desse nível.
apenas em 2023/24, safra em que se projeta uma produtividade média nacional de 3.934 kg/ha.

Uma vez estabelecido o teto de referência, foi possível estimar a folga de produtividade para os grãos comparando-o com a produtividade média desse grupo de produtos em cada região brasileira. Mesmo nesse nível agregado, encontraram-se diferenças inter regionais acentuadas nas folgas estimadas (desde zero, no Centro-Oeste, no Sul e no Sudeste, em diferentes anos, até 72,2% do potencial estatístico no Nordeste, em 1991). Esta é uma forma alternativa de quantificar a elevada variabilidade do desempenho da produção agrícola no território brasileiro. O diferencial é que as análises são feitas em uma escala adaptativa e fechada que relativiza a evolução e as expectativas de crescimento dentro de limites razoáveis.

Combinado com técnicas de projeção, o método estatístico de estimação da produtividade potencial permite gerar cenários plausíveis para avaliar as possibilidades de crescimento da produção agrícola por meio de reduções das folgas de produtividade conhecidas. Os cenários 1, 2 e 3, apresentados na seção Cenários de redução da folga de produtividade e impactos na produção nacional de grãos, ilustram esse tipo de uso da yield gap analysis. Neles, mostrou-se que o avanço relativo da produtividade em relação ao potencial tende a ser maior nas regiões com mais folga (Norte nos cenários 2 e 3), excluídas outras restrições que interferem no desempenho produtivo da agricultura. Note-se que, nos cenários 2 e 3, as restrições excluíram as regiões Nordeste e Sudeste daquelas com possibilidade de participação na solução ótima. Resultado similar foi encontrado por Magalhães e Diao (2009), que, aplicando métodos de entropia generalizada e estimações econométricas, ao nível de microrregiões brasileiras para três grãos (arroz, milho e trigo), encontraram que rendimentos em regiões menos produtivas convergem para aqueles em regiões mais produtivas, mantendo constantes outros fatores, embora tal processo seja bastante lento.

Síntese e considerações finais

Em geral, o grande benefício do conceito de produtividade potencial é fechar a escala da produtividade, de modo a enquadrar a evolução e as expectativas de crescimento dentro de limites razoáveis. A análise da folga de produtividade compara as produtividades médias registradas com o potencial estimado para avaliar a magnitude do progresso havido ou possível em uma escala espacial e temporal de interesse.

Há diversos métodos para operacionalizar a produtividade potencial, sendo os mais tradicionais baseados em modelos de simulação. No entanto, eles podem incorporar muitos parâmetros, o que aumenta os erros nos resultados, e requerem dados específicos de condições biofísicas e de manejo agronômico que frequentemente não
Análise da folga de produtividade na produção de grãos no Brasil

Estão disponíveis ou não são diretamente compatíveis com as estatísticas de produção agrícola, comumente utilizadas para estabelecer os valores médios.

Este estudo apresentou e aplicou uma nova proposta metodológica para operacionalizar a produtividade potencial que evita certas dificuldades técnicas ou limitações operacionais dos métodos tradicionais. Trata-se de um método estatístico, territorialmente hierárquico, temporalmente adaptativo e exclusivamente baseado nas estatísticas de produção agrícola. O método apresenta algumas vantagens operacionais em relação aos métodos tradicionais. As principais delas estão discriminadas a seguir:

- dispensa conhecimentos e dados específicos da fisiologia da planta, solos e clima das regiões de interesse;
- os dados necessários em geral existem, estão disponíveis e podem ser acessados com facilidade;
- permite lidar com agregados (como os grãos, tratados neste trabalho), além de cultivos individuais;
- permite lidar com diversos níveis territoriais sem incorrer em erros de compatibilização de escalas.

Tais características favorecem o uso do método estatístico proposto para análises mais agregadas do ponto de vista territorial. Neste trabalho, foi aplicado em nível nacional, tomando as cinco regiões brasileiras como unidades para determinar a produtividade potencial do agregado grãos. Análise similar, territorialmente mais detalhada, pode ser feita para o nível regional, com base nas unidades da federação; para o nível mesorregional, tomando-se as microrregiões; e para o nível microrregional, a partir dos municípios.

Deve-se registrar que, no caso de cultivos individuais, o potencial estatístico tende a subestimar o potencial determinado com outros métodos. No caso do Brasil, porém, são poucas as estimativas conhecidas (p.e.x. (MARIN et al., 2016; MONTEIRO, 2015; MONTEIRO et al., 2013; 2017; SENTELHAS et al. 2015; TOJO SOLER, SENTELHAS e HOOGENBOOM, 2007) e a replicação para outros cultivos pode encontrar dificuldades. Em situações como essa, o método proposto torna-se especialmente útil para o desenho de cenários de evolução da produtividade das lavouras e seus impactos na produção no curto prazo e na ausência de rupturas socioeconômicas, climáticas ou tecnológicas.

Exercícios para ilustrar tal uso foram realizados e apresentados neste trabalho. O principal deles consistiu em três fases encadeadas que combinaram diferentes técnicas. Na primeira fase, de **Construção**, estimaram-se o potencial e a folga de produtividade de grãos nas regiões brasileiras; na segunda fase, de **Cálculos auxiliares**, obtiveram-se projeções de produção e estimativas de ganho de produtividade; na terceira e última
fase do exercício, de Programação, foram desenhados e executados programas de otimização com o objetivo de maximizar a produção nacional de grãos sob certas restrições, determinadas nas fases anteriores (a folga de produtividade, os volumes e ganhos de produtividade máximos projetados). Os resultados apontaram onde e quanto se poderia esperar de crescimento da produtividade regional de grãos para que a produção nacional fosse máxima nas condições simuladas que, ressalte-se, são bastante realistas considerando a situação presente.

Os resultados das análises evidenciam e quantificam possibilidades generalizadas, mas desiguais de crescimento da produtividade de grãos nas diferentes regiões do país. Adicionalmente, a viabilidade de replicação do método estatístico de análise de folga de produtividade para diferentes lavouras e níveis territoriais evidenciam o potencial de uso da abordagem no planejamento e na tomada de decisão na pesquisa e na política agrícola no Brasil.

Referências

TOJO SOLER, C. M.; SENTELHAS, P. C.; HOOGENBOOM, G. Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-

Anexos
Tabela anexa 1. Produção, produtividade (média e potencial) e folga de produtividade de grãos – Brasil e regiões, 1990 a 2015

<table>
<thead>
<tr>
<th>Ano</th>
<th>Região</th>
<th>Quantidade produzida t</th>
<th>Produtividade média kg/ha</th>
<th>Produtividade potencial kg/ha</th>
<th>Folga de produtividade kg/ha</th>
<th>% potencial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>00 - BR</td>
<td>56.634.533 t</td>
<td>1.551</td>
<td>1.909</td>
<td>358</td>
<td>18,76</td>
</tr>
<tr>
<td></td>
<td>01 - N</td>
<td>1.395.148</td>
<td>2,46</td>
<td>1.288</td>
<td>1.909</td>
<td>621</td>
</tr>
<tr>
<td></td>
<td>02 - NE</td>
<td>4.048.502</td>
<td>7,15</td>
<td>587</td>
<td>1.909</td>
<td>1.322</td>
</tr>
<tr>
<td></td>
<td>03 - SD</td>
<td>11.330.605</td>
<td>20,01</td>
<td>1.792</td>
<td>1.909</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>04 - S</td>
<td>27.828.315</td>
<td>49,14</td>
<td>1.749</td>
<td>1.909</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>05 - CO</td>
<td>12.031.965</td>
<td>21,24</td>
<td>1.909</td>
<td>1.909</td>
<td>0</td>
</tr>
<tr>
<td>1991</td>
<td>00 - BR</td>
<td>60.479.424 t</td>
<td>1.649</td>
<td>2.006</td>
<td>357</td>
<td>17,78</td>
</tr>
<tr>
<td></td>
<td>01 - N</td>
<td>1.464.115</td>
<td>2,42</td>
<td>1.302</td>
<td>2.006</td>
<td>703</td>
</tr>
<tr>
<td></td>
<td>02 - NE</td>
<td>3.907.718</td>
<td>6,46</td>
<td>557</td>
<td>2.006</td>
<td>1.449</td>
</tr>
<tr>
<td></td>
<td>03 - SD</td>
<td>11.793.868</td>
<td>19,50</td>
<td>1.864</td>
<td>2.006</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>04 - S</td>
<td>30.583.727</td>
<td>50,57</td>
<td>1.928</td>
<td>2.006</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>05 - CO</td>
<td>12.729.996</td>
<td>21,05</td>
<td>2.006</td>
<td>2.006</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>00 - BR</td>
<td>64.749.153 t</td>
<td>1.806</td>
<td>2.204</td>
<td>398</td>
<td>18,07</td>
</tr>
<tr>
<td></td>
<td>01 - N</td>
<td>1.643.106</td>
<td>2,54</td>
<td>1.354</td>
<td>2.204</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td>02 - NE</td>
<td>4.172.291</td>
<td>6,64</td>
<td>640</td>
<td>2.204</td>
<td>1.565</td>
</tr>
<tr>
<td></td>
<td>03 - SD</td>
<td>12.745.084</td>
<td>19,68</td>
<td>2.052</td>
<td>2.204</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>04 - S</td>
<td>32.235.281</td>
<td>49,78</td>
<td>2.069</td>
<td>2.204</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>05 - CO</td>
<td>13.953.390</td>
<td>21,55</td>
<td>2.204</td>
<td>2.204</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>00 - BR</td>
<td>71.093.829 t</td>
<td>1.953</td>
<td>2.371</td>
<td>417</td>
<td>17,61</td>
</tr>
<tr>
<td></td>
<td>01 - N</td>
<td>1.863.909</td>
<td>2,62</td>
<td>1.395</td>
<td>2.371</td>
<td>975</td>
</tr>
<tr>
<td></td>
<td>02 - NE</td>
<td>4.727.824</td>
<td>6,65</td>
<td>701</td>
<td>2.371</td>
<td>1.670</td>
</tr>
<tr>
<td></td>
<td>03 - SD</td>
<td>12.447.099</td>
<td>17,51</td>
<td>2.043</td>
<td>2.371</td>
<td>328</td>
</tr>
<tr>
<td></td>
<td>04 - S</td>
<td>36.482.845</td>
<td>51,32</td>
<td>2.371</td>
<td>2.371</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>05 - CO</td>
<td>15.572.152</td>
<td>21,90</td>
<td>2.279</td>
<td>2.371</td>
<td>92</td>
</tr>
<tr>
<td>1994</td>
<td>00 - BR</td>
<td>74.992.571 t</td>
<td>2.048</td>
<td>2.499</td>
<td>451</td>
<td>18,05</td>
</tr>
<tr>
<td></td>
<td>01 - N</td>
<td>2.095.018</td>
<td>2,79</td>
<td>1.463</td>
<td>2.499</td>
<td>1.036</td>
</tr>
<tr>
<td></td>
<td>02 - NE</td>
<td>5.747.293</td>
<td>7,66</td>
<td>823</td>
<td>2.499</td>
<td>1.676</td>
</tr>
<tr>
<td></td>
<td>03 - SD</td>
<td>12.448.614</td>
<td>16,60</td>
<td>2.118</td>
<td>2.499</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>04 - S</td>
<td>37.725.924</td>
<td>50,31</td>
<td>2.499</td>
<td>2.499</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>05 - CO</td>
<td>16.975.722</td>
<td>22,64</td>
<td>2.349</td>
<td>2.499</td>
<td>150</td>
</tr>
<tr>
<td>1995</td>
<td>00 - BR</td>
<td>74.894.360 t</td>
<td>2.062</td>
<td>2.517</td>
<td>455</td>
<td>18,07</td>
</tr>
<tr>
<td></td>
<td>01 - N</td>
<td>2.050.059</td>
<td>2,74</td>
<td>1.455</td>
<td>2.517</td>
<td>1.062</td>
</tr>
<tr>
<td></td>
<td>02 - NE</td>
<td>6.247.768</td>
<td>8,34</td>
<td>835</td>
<td>2.517</td>
<td>1.682</td>
</tr>
<tr>
<td></td>
<td>03 - SD</td>
<td>11.877.171</td>
<td>15,86</td>
<td>2.149</td>
<td>2.517</td>
<td>368</td>
</tr>
<tr>
<td></td>
<td>04 - S</td>
<td>36.818.383</td>
<td>49,16</td>
<td>2.517</td>
<td>2.517</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>05 - CO</td>
<td>17.900.980</td>
<td>23,90</td>
<td>2.463</td>
<td>2.517</td>
<td>54</td>
</tr>
<tr>
<td>1996</td>
<td>00 - BR</td>
<td>74.713.022 t</td>
<td>2.131</td>
<td>2.586</td>
<td>455</td>
<td>17,60</td>
</tr>
<tr>
<td></td>
<td>01 - N</td>
<td>1.941.905</td>
<td>2,60</td>
<td>1.443</td>
<td>2.586</td>
<td>1.143</td>
</tr>
<tr>
<td></td>
<td>02 - NE</td>
<td>5.757.106</td>
<td>7,71</td>
<td>834</td>
<td>2.586</td>
<td>1.753</td>
</tr>
<tr>
<td></td>
<td>03 - SD</td>
<td>11.928.306</td>
<td>15,97</td>
<td>2.298</td>
<td>2.586</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>04 - S</td>
<td>36.389.989</td>
<td>48,71</td>
<td>2.529</td>
<td>2.586</td>
<td>57</td>
</tr>
</tbody>
</table>
Tabela anexa 1. Produção, produtividade (média e potencial) e folga de produtividade de grãos – Brasil e regiões, 1990 a 2015

<table>
<thead>
<tr>
<th>Ano</th>
<th>Região</th>
<th>Quantidade produzida</th>
<th>Produtividade média</th>
<th>Produtividade potencial</th>
<th>Folga de produtividade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>t</td>
<td>%</td>
<td>kg/ha</td>
<td>kg/ha</td>
</tr>
<tr>
<td>1997</td>
<td>00 - BR</td>
<td>73.282.414</td>
<td>100,00</td>
<td>2.180</td>
<td>2.645</td>
</tr>
<tr>
<td>01 - N</td>
<td>1.844.973</td>
<td>2,52</td>
<td>1.410</td>
<td>2.645</td>
<td>1.234</td>
</tr>
<tr>
<td>02 - NE</td>
<td>4.801.195</td>
<td>6,55</td>
<td>836</td>
<td>2.645</td>
<td>1.808</td>
</tr>
<tr>
<td>03 - SD</td>
<td>11.572.669</td>
<td>15,79</td>
<td>2.356</td>
<td>2.645</td>
<td>289</td>
</tr>
<tr>
<td>04 - S</td>
<td>35.533.701</td>
<td>48,49</td>
<td>2.489</td>
<td>2.645</td>
<td>156</td>
</tr>
<tr>
<td>05 - CO</td>
<td>19.529.876</td>
<td>26,65</td>
<td>2.645</td>
<td>2.645</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>00 - BR</td>
<td>77.927.926</td>
<td>100,00</td>
<td>2.263</td>
<td>2.713</td>
</tr>
<tr>
<td>01 - N</td>
<td>2.075.943</td>
<td>2,66</td>
<td>1.487</td>
<td>2.713</td>
<td>1.226</td>
</tr>
<tr>
<td>02 - NE</td>
<td>5.095.607</td>
<td>6,54</td>
<td>916</td>
<td>2.713</td>
<td>1.797</td>
</tr>
<tr>
<td>03 - SD</td>
<td>12.127.114</td>
<td>15,56</td>
<td>2.449</td>
<td>2.713</td>
<td>264</td>
</tr>
<tr>
<td>04 - S</td>
<td>36.794.270</td>
<td>47,22</td>
<td>2.541</td>
<td>2.713</td>
<td>172</td>
</tr>
<tr>
<td>05 - CO</td>
<td>21.834.992</td>
<td>28,02</td>
<td>2.713</td>
<td>2.713</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>00 - BR</td>
<td>81.110.383</td>
<td>100,00</td>
<td>2.307</td>
<td>2.753</td>
</tr>
<tr>
<td>01 - N</td>
<td>2.243.824</td>
<td>2,77</td>
<td>1.525</td>
<td>2.753</td>
<td>1.228</td>
</tr>
<tr>
<td>02 - NE</td>
<td>5.817.922</td>
<td>7,17</td>
<td>1.021</td>
<td>2.753</td>
<td>1.732</td>
</tr>
<tr>
<td>03 - SD</td>
<td>11.954.534</td>
<td>14,74</td>
<td>2.450</td>
<td>2.753</td>
<td>303</td>
</tr>
<tr>
<td>04 - S</td>
<td>37.209.774</td>
<td>45,88</td>
<td>2.577</td>
<td>2.753</td>
<td>176</td>
</tr>
<tr>
<td>05 - CO</td>
<td>23.884.328</td>
<td>29,45</td>
<td>2.753</td>
<td>2.753</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>00 - BR</td>
<td>89.380.013</td>
<td>100,00</td>
<td>2.464</td>
<td>2.927</td>
</tr>
<tr>
<td>01 - N</td>
<td>2.318.253</td>
<td>2,59</td>
<td>1.604</td>
<td>2.927</td>
<td>1.323</td>
</tr>
<tr>
<td>02 - NE</td>
<td>6.430.687</td>
<td>7,19</td>
<td>1.053</td>
<td>2.927</td>
<td>1.874</td>
</tr>
<tr>
<td>03 - SD</td>
<td>12.329.663</td>
<td>13,79</td>
<td>2.552</td>
<td>2.927</td>
<td>375</td>
</tr>
<tr>
<td>04 - S</td>
<td>41.483.393</td>
<td>46,41</td>
<td>2.816</td>
<td>2.927</td>
<td>111</td>
</tr>
<tr>
<td>05 - CO</td>
<td>26.818.017</td>
<td>30,00</td>
<td>2.927</td>
<td>2.927</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>00 - BR</td>
<td>94.495.169</td>
<td>100,00</td>
<td>2.516</td>
<td>3.002</td>
</tr>
<tr>
<td>01 - N</td>
<td>2.250.010</td>
<td>2,38</td>
<td>1.665</td>
<td>3.002</td>
<td>1.337</td>
</tr>
<tr>
<td>02 - NE</td>
<td>6.664.169</td>
<td>7,05</td>
<td>1.029</td>
<td>3.002</td>
<td>1.973</td>
</tr>
<tr>
<td>03 - SD</td>
<td>12.925.647</td>
<td>13,68</td>
<td>2.718</td>
<td>3.002</td>
<td>284</td>
</tr>
<tr>
<td>04 - S</td>
<td>43.366.374</td>
<td>45,89</td>
<td>2.850</td>
<td>3.002</td>
<td>152</td>
</tr>
<tr>
<td>05 - CO</td>
<td>29.288.969</td>
<td>31,00</td>
<td>3.002</td>
<td>3.002</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>00 - BR</td>
<td>107.971.970</td>
<td>100,00</td>
<td>2.712</td>
<td>3.122</td>
</tr>
<tr>
<td>01 - N</td>
<td>2.454.640</td>
<td>2,27</td>
<td>1.831</td>
<td>3.122</td>
<td>1.292</td>
</tr>
<tr>
<td>02 - NE</td>
<td>6.692.841</td>
<td>6,20</td>
<td>1.030</td>
<td>3.122</td>
<td>2.093</td>
</tr>
<tr>
<td>03 - SD</td>
<td>14.485.684</td>
<td>13,42</td>
<td>2.959</td>
<td>3.122</td>
<td>163</td>
</tr>
<tr>
<td>04 - S</td>
<td>50.948.304</td>
<td>47,19</td>
<td>3.122</td>
<td>3.122</td>
<td>0</td>
</tr>
<tr>
<td>05 - CO</td>
<td>33.390.502</td>
<td>30,93</td>
<td>3.122</td>
<td>3.122</td>
<td>19</td>
</tr>
<tr>
<td>2003</td>
<td>00 - BR</td>
<td>114.709.120</td>
<td>100,00</td>
<td>2.646</td>
<td>3.122</td>
</tr>
<tr>
<td>01 - N</td>
<td>2.914.468</td>
<td>2,54</td>
<td>1.975</td>
<td>3.122</td>
<td>1.147</td>
</tr>
<tr>
<td>02 - NE</td>
<td>8.018.245</td>
<td>6,99</td>
<td>1.130</td>
<td>3.122</td>
<td>1.993</td>
</tr>
<tr>
<td>03 - SD</td>
<td>16.132.754</td>
<td>14,06</td>
<td>3.108</td>
<td>3.122</td>
<td>14</td>
</tr>
<tr>
<td>Ano</td>
<td>Região</td>
<td>Quantidade produzida</td>
<td>Produtividade média</td>
<td>Produtividade potencial</td>
<td>Folga de produtividade</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t</td>
<td>%</td>
<td>kg/ha</td>
<td>kg/ha</td>
</tr>
<tr>
<td>2004</td>
<td>00 - BR</td>
<td>119.795.724</td>
<td>100,00</td>
<td>2.600</td>
<td>3.135</td>
</tr>
<tr>
<td></td>
<td>01 - N</td>
<td>3.538.847</td>
<td>2,95</td>
<td>2.092</td>
<td>3.135</td>
</tr>
<tr>
<td></td>
<td>02 - NE</td>
<td>9.263.994</td>
<td>7,73</td>
<td>1.256</td>
<td>3.135</td>
</tr>
<tr>
<td></td>
<td>03 - SD</td>
<td>17.245.705</td>
<td>14,40</td>
<td>3.135</td>
<td>3.135</td>
</tr>
<tr>
<td></td>
<td>04 - S</td>
<td>48.817.083</td>
<td>40,75</td>
<td>2.814</td>
<td>3.135</td>
</tr>
<tr>
<td></td>
<td>05 - CO</td>
<td>40.930.096</td>
<td>34,17</td>
<td>2.893</td>
<td>3.135</td>
</tr>
<tr>
<td>2005</td>
<td>00 - BR</td>
<td>117.448.518</td>
<td>100,00</td>
<td>2.512</td>
<td>3.135</td>
</tr>
<tr>
<td></td>
<td>01 - N</td>
<td>3.730.393</td>
<td>3,18</td>
<td>2.101</td>
<td>3.135</td>
</tr>
<tr>
<td></td>
<td>02 - NE</td>
<td>9.916.232</td>
<td>8,44</td>
<td>1.308</td>
<td>3.135</td>
</tr>
<tr>
<td></td>
<td>03 - SD</td>
<td>17.045.476</td>
<td>14,51</td>
<td>3.109</td>
<td>3.135</td>
</tr>
<tr>
<td></td>
<td>04 - S</td>
<td>45.246.342</td>
<td>38,52</td>
<td>2.652</td>
<td>3.135</td>
</tr>
<tr>
<td></td>
<td>05 - CO</td>
<td>41.510.075</td>
<td>35,34</td>
<td>2.793</td>
<td>3.135</td>
</tr>
<tr>
<td>2006</td>
<td>00 - BR</td>
<td>122.152.101</td>
<td>100,00</td>
<td>2.653</td>
<td>3.181</td>
</tr>
<tr>
<td></td>
<td>01 - N</td>
<td>3.666.024</td>
<td>3,00</td>
<td>2.096</td>
<td>3.181</td>
</tr>
<tr>
<td></td>
<td>02 - NE</td>
<td>10.120.734</td>
<td>8,29</td>
<td>1.329</td>
<td>3.181</td>
</tr>
<tr>
<td></td>
<td>03 - SD</td>
<td>16.472.971</td>
<td>13,49</td>
<td>3.181</td>
<td>3.181</td>
</tr>
<tr>
<td></td>
<td>04 - S</td>
<td>49.016.853</td>
<td>40,13</td>
<td>2.922</td>
<td>3.181</td>
</tr>
<tr>
<td></td>
<td>05 - CO</td>
<td>42.875.518</td>
<td>35,10</td>
<td>2.911</td>
<td>3.181</td>
</tr>
<tr>
<td>2007</td>
<td>00 - BR</td>
<td>133.129.684</td>
<td>100,00</td>
<td>2.903</td>
<td>3.377</td>
</tr>
<tr>
<td></td>
<td>01 - N</td>
<td>3.602.324</td>
<td>2,71</td>
<td>2.156</td>
<td>3.377</td>
</tr>
<tr>
<td></td>
<td>02 - NE</td>
<td>11.038.136</td>
<td>8,29</td>
<td>1.438</td>
<td>3.377</td>
</tr>
<tr>
<td></td>
<td>03 - SD</td>
<td>16.466.938</td>
<td>12,37</td>
<td>3.377</td>
<td>3.377</td>
</tr>
<tr>
<td></td>
<td>04 - S</td>
<td>56.530.762</td>
<td>42,46</td>
<td>3.307</td>
<td>3.377</td>
</tr>
<tr>
<td></td>
<td>05 - CO</td>
<td>45.489.525</td>
<td>34,17</td>
<td>3.129</td>
<td>3.377</td>
</tr>
<tr>
<td>2008</td>
<td>00 - BR</td>
<td>138.716.158</td>
<td>100,00</td>
<td>2.995</td>
<td>3.574</td>
</tr>
<tr>
<td></td>
<td>01 - N</td>
<td>3.725.013</td>
<td>2,69</td>
<td>2.281</td>
<td>3.574</td>
</tr>
<tr>
<td></td>
<td>02 - NE</td>
<td>11.862.584</td>
<td>8,55</td>
<td>1.524</td>
<td>3.574</td>
</tr>
<tr>
<td></td>
<td>03 - SD</td>
<td>16.657.073</td>
<td>12,01</td>
<td>3.574</td>
<td>3.574</td>
</tr>
<tr>
<td></td>
<td>04 - S</td>
<td>57.926.845</td>
<td>41,76</td>
<td>3.321</td>
<td>3.574</td>
</tr>
<tr>
<td></td>
<td>05 - CO</td>
<td>48.544.643</td>
<td>35,00</td>
<td>3.282</td>
<td>3.574</td>
</tr>
<tr>
<td>2009</td>
<td>00 - BR</td>
<td>143.881.954</td>
<td>100,00</td>
<td>3.081</td>
<td>3.676</td>
</tr>
<tr>
<td></td>
<td>01 - N</td>
<td>3.949.544</td>
<td>2,74</td>
<td>2.419</td>
<td>3.676</td>
</tr>
<tr>
<td></td>
<td>02 - NE</td>
<td>12.518.964</td>
<td>8,70</td>
<td>1.636</td>
<td>3.676</td>
</tr>
<tr>
<td></td>
<td>03 - SD</td>
<td>16.824.695</td>
<td>11,69</td>
<td>3.676</td>
<td>3.676</td>
</tr>
<tr>
<td></td>
<td>04 - S</td>
<td>59.400.404</td>
<td>41,28</td>
<td>3.394</td>
<td>3.676</td>
</tr>
<tr>
<td></td>
<td>05 - CO</td>
<td>51.188.347</td>
<td>35,58</td>
<td>3.338</td>
<td>3.676</td>
</tr>
<tr>
<td>2010</td>
<td>00 - BR</td>
<td>148.736.249</td>
<td>100,00</td>
<td>3.149</td>
<td>3.677</td>
</tr>
<tr>
<td></td>
<td>01 - N</td>
<td>4.124.988</td>
<td>2,77</td>
<td>2.526</td>
<td>3.677</td>
</tr>
<tr>
<td></td>
<td>02 - NE</td>
<td>13.292.590</td>
<td>8,94</td>
<td>1.713</td>
<td>3.677</td>
</tr>
<tr>
<td>Ano</td>
<td>Região</td>
<td>Quantidade produzida</td>
<td>Produtividade média</td>
<td>Produtividade potencial</td>
<td>Folga de produtividade</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t</td>
<td>kg/ha</td>
<td>kg/ha</td>
<td>kg/ha % potencial</td>
</tr>
<tr>
<td>03</td>
<td>SD</td>
<td>16.392.284</td>
<td>11,02</td>
<td>3.677</td>
<td>3.677 0</td>
</tr>
<tr>
<td>04</td>
<td>S</td>
<td>61.668.215</td>
<td>41,46</td>
<td>3.527</td>
<td>3.677 150</td>
</tr>
<tr>
<td>05</td>
<td>CO</td>
<td>53.258.171</td>
<td>35,81</td>
<td>3.350</td>
<td>3.677 326</td>
</tr>
<tr>
<td>2011</td>
<td>00 - BR</td>
<td>158.376.330</td>
<td>100,00</td>
<td>3.308</td>
<td>3.829 520</td>
</tr>
<tr>
<td>01</td>
<td>N</td>
<td>4.473.728</td>
<td>2,82</td>
<td>2.667</td>
<td>3.829 1.162</td>
</tr>
<tr>
<td>02</td>
<td>NE</td>
<td>13.308.421</td>
<td>8,40</td>
<td>1.865</td>
<td>3.829 1.964</td>
</tr>
<tr>
<td>03</td>
<td>SD</td>
<td>17.285.403</td>
<td>10,91</td>
<td>3.829</td>
<td>3.829 0</td>
</tr>
<tr>
<td>04</td>
<td>S</td>
<td>62.563.786</td>
<td>39,50</td>
<td>3.586</td>
<td>3.829 243</td>
</tr>
<tr>
<td>05</td>
<td>CO</td>
<td>60.744.992</td>
<td>38,35</td>
<td>3.553</td>
<td>3.829 275</td>
</tr>
<tr>
<td>2012</td>
<td>00 - BR</td>
<td>171.380.228</td>
<td>100,00</td>
<td>3.429</td>
<td>3.926 497</td>
</tr>
<tr>
<td>01</td>
<td>N</td>
<td>4.906.654</td>
<td>2,86</td>
<td>2.784</td>
<td>3.926 1.143</td>
</tr>
<tr>
<td>02</td>
<td>NE</td>
<td>13.353.355</td>
<td>7,79</td>
<td>1.938</td>
<td>3.926 1.989</td>
</tr>
<tr>
<td>03</td>
<td>SD</td>
<td>18.208.746</td>
<td>10,62</td>
<td>3.926</td>
<td>3.926 0</td>
</tr>
<tr>
<td>04</td>
<td>S</td>
<td>65.393.823</td>
<td>38,16</td>
<td>3.645</td>
<td>3.926 281</td>
</tr>
<tr>
<td>05</td>
<td>CO</td>
<td>69.517.650</td>
<td>40,56</td>
<td>3.707</td>
<td>3.926 219</td>
</tr>
<tr>
<td>2013</td>
<td>00 - BR</td>
<td>182.988.990</td>
<td>100,00</td>
<td>3.474</td>
<td>3.926 452</td>
</tr>
<tr>
<td>01</td>
<td>N</td>
<td>5.551.290</td>
<td>3,03</td>
<td>2.906</td>
<td>3.926 1.021</td>
</tr>
<tr>
<td>02</td>
<td>NE</td>
<td>13.680.204</td>
<td>7,48</td>
<td>2.024</td>
<td>3.926 1.902</td>
</tr>
<tr>
<td>03</td>
<td>SD</td>
<td>18.932.541</td>
<td>10,35</td>
<td>3.923</td>
<td>3.926 3</td>
</tr>
<tr>
<td>04</td>
<td>S</td>
<td>66.418.832</td>
<td>36,30</td>
<td>3.575</td>
<td>3.926 351</td>
</tr>
<tr>
<td>05</td>
<td>CO</td>
<td>78.406.123</td>
<td>42,85</td>
<td>3.805</td>
<td>3.926 121</td>
</tr>
<tr>
<td>2014</td>
<td>00 - BR</td>
<td>198.775.886</td>
<td>100,00</td>
<td>3.577</td>
<td>3.926 349</td>
</tr>
<tr>
<td>01</td>
<td>N</td>
<td>6.474.458</td>
<td>3,26</td>
<td>3.038</td>
<td>3.926 888</td>
</tr>
<tr>
<td>02</td>
<td>NE</td>
<td>15.194.570</td>
<td>7,64</td>
<td>2.099</td>
<td>3.926 1.827</td>
</tr>
<tr>
<td>03</td>
<td>SD</td>
<td>19.267.743</td>
<td>9,69</td>
<td>3.859</td>
<td>3.926 67</td>
</tr>
<tr>
<td>04</td>
<td>S</td>
<td>73.243.679</td>
<td>36,85</td>
<td>3.826</td>
<td>3.926 101</td>
</tr>
<tr>
<td>05</td>
<td>CO</td>
<td>84.595.435</td>
<td>42,56</td>
<td>3.835</td>
<td>3.926 91</td>
</tr>
<tr>
<td>2015</td>
<td>00 - BR</td>
<td>203.556.941</td>
<td>100,00</td>
<td>3.570</td>
<td>3.926 356</td>
</tr>
<tr>
<td>01</td>
<td>N</td>
<td>7.018.382</td>
<td>3,45</td>
<td>3.113</td>
<td>3.926 813</td>
</tr>
<tr>
<td>02</td>
<td>NE</td>
<td>16.617.463</td>
<td>8,16</td>
<td>2.181</td>
<td>3.926 1.746</td>
</tr>
<tr>
<td>03</td>
<td>SD</td>
<td>19.261.616</td>
<td>9,46</td>
<td>3.783</td>
<td>3.926 143</td>
</tr>
<tr>
<td>04</td>
<td>S</td>
<td>73.377.565</td>
<td>36,05</td>
<td>3.789</td>
<td>3.926 137</td>
</tr>
<tr>
<td>05</td>
<td>CO</td>
<td>87.281.916</td>
<td>42,88</td>
<td>3.847</td>
<td>3.926 79</td>
</tr>
</tbody>
</table>
Tabela anexa 2. Projeções da produção de grãos nas regiões brasileiras – 2016 a 2020

<table>
<thead>
<tr>
<th>Ano</th>
<th>Região</th>
<th>Projeção ($q_{\text{max},i}$, t)</th>
<th>Limite inferior (t)</th>
<th>Limite superior (t)</th>
<th>Diferença em relação a 2015 ($q_{\text{max},i}$, t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>00 - BR</td>
<td>214.781.485</td>
<td>199.062.562</td>
<td>230.500.409</td>
<td>11.224.545</td>
</tr>
<tr>
<td></td>
<td>01 - N</td>
<td>7.553.606</td>
<td>6.883.174</td>
<td>8.224.038</td>
<td>535.224</td>
</tr>
<tr>
<td></td>
<td>02 - NE</td>
<td>16.465.547</td>
<td>15.020.886</td>
<td>17.910.209</td>
<td>-151.916</td>
</tr>
<tr>
<td></td>
<td>03 - SD</td>
<td>19.644.051</td>
<td>18.009.596</td>
<td>21.278.507</td>
<td>382.436</td>
</tr>
<tr>
<td></td>
<td>04 - S</td>
<td>74.846.220</td>
<td>68.774.507</td>
<td>80.917.934</td>
<td>1.468.656</td>
</tr>
<tr>
<td></td>
<td>05 - CO</td>
<td>96.272.060</td>
<td>90.374.399</td>
<td>102.169.722</td>
<td>8.990.145</td>
</tr>
<tr>
<td>2017</td>
<td>00 - BR</td>
<td>225.072.419</td>
<td>206.631.363</td>
<td>243.513.474</td>
<td>11.224.545</td>
</tr>
<tr>
<td></td>
<td>01 - N</td>
<td>8.250.427</td>
<td>7.412.387</td>
<td>9.088.467</td>
<td>2.676.080</td>
</tr>
<tr>
<td></td>
<td>02 - NE</td>
<td>16.968.306</td>
<td>15.353.126</td>
<td>18.583.486</td>
<td>535.224</td>
</tr>
<tr>
<td></td>
<td>03 - SD</td>
<td>19.961.292</td>
<td>18.133.915</td>
<td>21.788.669</td>
<td>382.436</td>
</tr>
<tr>
<td></td>
<td>04 - S</td>
<td>76.668.190</td>
<td>69.879.808</td>
<td>83.456.572</td>
<td>1.468.656</td>
</tr>
<tr>
<td></td>
<td>05 - CO</td>
<td>103.224.204</td>
<td>95.852.127</td>
<td>110.596.281</td>
<td>8.990.145</td>
</tr>
<tr>
<td>2018</td>
<td>00 - BR</td>
<td>235.363.352</td>
<td>213.641.840</td>
<td>257.084.864</td>
<td>11.224.545</td>
</tr>
<tr>
<td></td>
<td>01 - N</td>
<td>8.947.248</td>
<td>7.874.034</td>
<td>10.020.463</td>
<td>2.146.429</td>
</tr>
<tr>
<td></td>
<td>02 - NE</td>
<td>17.471.064</td>
<td>15.701.723</td>
<td>19.240.406</td>
<td>3.538.683</td>
</tr>
<tr>
<td></td>
<td>03 - SD</td>
<td>20.278.532</td>
<td>18.276.741</td>
<td>22.280.323</td>
<td>3.538.683</td>
</tr>
<tr>
<td></td>
<td>04 - S</td>
<td>78.490.160</td>
<td>71.053.860</td>
<td>85.926.460</td>
<td>7.874.034</td>
</tr>
<tr>
<td></td>
<td>05 - CO</td>
<td>110.176.347</td>
<td>100.735.483</td>
<td>119.617.212</td>
<td>9.844.729</td>
</tr>
<tr>
<td>2019</td>
<td>00 - BR</td>
<td>245.654.285</td>
<td>220.209.014</td>
<td>271.099.556</td>
<td>11.224.545</td>
</tr>
<tr>
<td></td>
<td>01 - N</td>
<td>9.644.069</td>
<td>8.282.416</td>
<td>11.005.722</td>
<td>2.763.253</td>
</tr>
<tr>
<td></td>
<td>02 - NE</td>
<td>17.973.823</td>
<td>16.062.716</td>
<td>19.884.930</td>
<td>3.922.214</td>
</tr>
<tr>
<td></td>
<td>03 - SD</td>
<td>20.595.773</td>
<td>18.433.591</td>
<td>22.757.954</td>
<td>4.264.183</td>
</tr>
<tr>
<td></td>
<td>04 - S</td>
<td>80.312.130</td>
<td>72.280.008</td>
<td>88.344.252</td>
<td>6.062.130</td>
</tr>
<tr>
<td></td>
<td>05 - CO</td>
<td>117.128.491</td>
<td>105.150.284</td>
<td>129.106.698</td>
<td>13.956.407</td>
</tr>
<tr>
<td>2020</td>
<td>00 - BR</td>
<td>255.945.219</td>
<td>226.420.368</td>
<td>285.470.070</td>
<td>11.224.545</td>
</tr>
<tr>
<td></td>
<td>02 - NE</td>
<td>18.476.581</td>
<td>16.433.522</td>
<td>20.519.641</td>
<td>4.086.119</td>
</tr>
<tr>
<td></td>
<td>03 - SD</td>
<td>20.913.013</td>
<td>18.601.544</td>
<td>23.224.482</td>
<td>4.322.969</td>
</tr>
<tr>
<td></td>
<td>04 - S</td>
<td>82.134.100</td>
<td>73.547.401</td>
<td>90.720.800</td>
<td>7.173.401</td>
</tr>
<tr>
<td></td>
<td>05 - CO</td>
<td>124.080.634</td>
<td>109.189.769</td>
<td>138.971.500</td>
<td>29.781.731</td>
</tr>
</tbody>
</table>

Fonte: IBGE. Produção Agrícola Municipal (PAM), 1990 a 2015.
Preparação dos dados pelos autores.
Nota: Computado no Tableau Desktop, v. 10.3.2
Tabela anexa 3. Cenário 1: Produtividade de grãos e folga nos cenários base e ótimo - Brasil e regiões

<table>
<thead>
<tr>
<th>Região</th>
<th>P_i</th>
<th>Ótima</th>
<th>Diferença</th>
<th>Y_{GI}</th>
<th>Ótima</th>
<th>Diferença (%)</th>
<th>Y_{GI} (% potencial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 - BR</td>
<td>3.570</td>
<td>3.649</td>
<td>79</td>
<td>356</td>
<td>277</td>
<td>-22</td>
<td>9,07</td>
</tr>
<tr>
<td>01 - N</td>
<td>3.113</td>
<td>3.216</td>
<td>102</td>
<td>813</td>
<td>710</td>
<td>-13</td>
<td>20,70</td>
</tr>
<tr>
<td>02 - NE</td>
<td>2.181</td>
<td>2.216</td>
<td>35</td>
<td>1.746</td>
<td>1.711</td>
<td>-2</td>
<td>44,46</td>
</tr>
<tr>
<td>03 - SD</td>
<td>3.783</td>
<td>3.891</td>
<td>108</td>
<td>143</td>
<td>35</td>
<td>-75</td>
<td>3,65</td>
</tr>
<tr>
<td>04 - S</td>
<td>3.789</td>
<td>3.876</td>
<td>87</td>
<td>137</td>
<td>50</td>
<td>-63</td>
<td>3,50</td>
</tr>
<tr>
<td>05 - CO</td>
<td>3.847</td>
<td>3.926</td>
<td>79</td>
<td>79</td>
<td>0</td>
<td>-100</td>
<td>2,01</td>
</tr>
</tbody>
</table>